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In response to the proposal of Tsafnat et al. to converge towards three open
health data standards, this viewpoint provides a critical reflection on the proposed
alignment of using openEHR, FHIR and OMOP as the default standards for clinical
care and administration, data exchange and longitudinal analysis, respectively. We
argue that open standards are a necessary but not sufficient condition to achieve
health data interoperability. The ecosystem of open-source implementations needs
to be considered when choosing an appropriate standard for a given context. We
discuss two specific contexts, namely standardization of i) health data for federated
learning, and ii) health data sharing in low- and middle income countries (LMICs).
Specific design principles, practical considerations and implementation choices for
these two contexts are described, based on ongoing work in both areas. In the case
of federated learning, we observe convergence towards OMOP and FHIR, where the
two standards can effectively be used side-by-side given the availibility of mediators
between the two. In the case of health information exchanges in LMICs, we see
a strong convergence towards FHIR as the primary standard, with as yet limited
adoption of OMOP and openEHR. We propose practical guidelines for context-
specific adaptation of open standards.

Open standards are a necessary but not sufficient condition for interoperability

“A paradox of health care interoperability is the existence of a large number of standards
with significant overlap among them,” say Tsafnat et al., followed by a call to action towards
the health informatics community to put effort into establishing convergence and preventing
collision [1]. To do so, they propose to converge on three open standards, namely i) openEHR
for clinical care and administration; ii) Fast Health Interoperability Resources (FHIR) for
data exchange and iii) Observational Medical Outcomes Partnership Common Data Model
(OMOP) for longitudinal analysis. They argue that open data standards, backed by engaged
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communities, hold an advantage over proprietary ones and therefore should be chosen as the
steppingstones towards achieving true interoperability.

While we support their high-level rationale and intention, we feel their proposed trichotomy
does not do justice to details that are crucial in real-world implementations. This viewpoint
provides a critical reflection on their proposed framework in three parts. First, we reflect on
salient differences between the three open standards from the perspective of the notion of
openness of digital platforms [2] and the paradox of open [3]. Subsequently, we outline the
importance of the open-source ecosystem by reflecting on our considerations in designing and
implementing health data platforms in two specific contexts, namely i) platforms for federated
learning on shared health data in high income countries; and ii) health data platforms for
low and middle income countries (LMICs). We conclude with practical guidelines for context-
specific adaptation of open standards.

Digital platforms require extensibility, availibility of complementary components
and availibility of executable pieces of software

In their editorial, Tsafnat et al. argue that i) the paradox of interoperability of having over-
lapping standards can be addressed by converging on just three standards; ii) practical and
socio-technical considerations are as important as, if not more important than, technical supe-
riority and therefore balancing of customizibility and rigidity is of the essence; and iii) open
standards, backed by engaged communities, hold an advantage over proprietary ones. While
we concur with these points, we argue that these are necessary, but not sufficient conditions
for convergence of health data standards. Existing research on digital platforms underlines the
importance of the platform openness, not only in terms of open standards, but also in terms
of availibility of executable pieces of software, extensibility of the code base and availibility of
complements to the core technical platform (in this case the health data standard is the core
technical platform) [2]. Only when the majority of these aspects of digital platforms are met
can we resonably expect that the digital platform will indeed flourish and be longlived.

A similar line of reasoning has been put forward by Keller and Tarkowski in what they call
the paradox of open, namely that open ecosystems can only flourish if two types of conditions
are met [3]. The first condition states that many people need to contribute to the creation of
a common resource. “This is the story of Wikipedia, OpenStreetMap, Blender.org, and the
countless free software projects that provide much of the internet’s infrastructure.” [3] Indeed,
Tsafnat et al. have explicitly taken into account that “an engaged and vibrant community
is a major advantage for the longevity of the data standards it uses,” which has informed
their proposal to converge towards OMOP, FHIR en openEHR. However, the emphasis on
open-source implementations is somewhat overlooked. This point is only mentioned in passing
when Tsafnat et al. reference work done by Reynolds and Wyatt who already argued in 2011
“… for the superiority of open-source licensing to promote safer, more effective health care
information systems. We claim that open-source licensing in health care information systems
is essential to rational procurement strategy” [4]. Hence, we extend the line of reasoning of
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Tsafnat et al. by emphasizing that the availability of executable pieces of software, extensibility
of the code base and availibility of complementary components is an important criterion which
needs to be explicitly taken into account when choosing which standard to adopt.

The second condition put forward by Keller and Tarkoswki is that open ecosystems have proven
fruitful when “opening up” is the result of external incentives or requirements, rather than
voluntary actions. Examples of such external incentives are “… publicly-funded knowledge
production like Open Access academic publications, cultural heritage collections in the Pub-
lic Domain, Open Educational Resources (OER), and Open Government data.” [3] Another
canonical example is the birth of the GSM standard, which was mandated by European legisla-
tion [5]. Reflecting on this condition in the context of open health data ecosystems, we observe
a salient difference between FHIR vis-a-vis openEHR and OMOP, namely that the former is
the only one that has been mandated (or at least strongly recommended) in some jurisdictions.
In the US, the Office of the National Coordinator for Health Information Technology (ONC)
and the Centers for Medicare and Medicaid Services (CMS) have introduced a steady stream
of new regulations, criteria, and deadlines in Health IT that has resulted in significant adop-
tion of FHIR [6]. In India, the open Health Claims Exchange protocol specification - which is
based on FHIR - has been mandated by the Indian government as the standard for e-claims
handling [7,8]. The African Union recommends all new implementations and digital health sys-
tem improvements use FHIR as the primary mechanism for data exchange [9], but doesn’t say
anything about the use of, for example, openEHR for administrative point-of-service systems.
The upcoming legislation on the European Health Data Space (EHDS) mandates interoper-
ability between electronic health record systems but has not specified which standard is to be
used, although FHIR and openEHR have both been mentioned in the legislative discussion.

These external incentives have resulted in a large boost in both commercial and open-source
development activities in the FHIR ecosystem. Illustrative of this is the speed with which
the Bulk FHIR API has been defined and implemented in almost all major implementations
[10,11], and the the SQL-on-FHIR specification to make large-scale analysis of FHIR data
accessible to a larger audience and portable between systems [12]. It has also led to more
people voluntarily contributing to FHIR-related open-source projects, which has resulted in
a wide offering of FHIR components across major technology stacks (Java, Python, .NET),
thereby strengthening the first condition. By comparison, OMOP and openEHR have not
yet profited from external incentives to spur the adoption and thereby growing the ecosystem
beyond a certain critical mass. To illustrate this, a search on GitHub on “FHIR” yields
8.2 thousand results, “OMOP or OHDSI” one thousand results, and “openEHR” returns 400
results. A quick-scan of the available open-source components listed on the website of the
three governing bodies HL7 [13], OHDSI [14] and openEHR [15], indicates that the ecosystem
of FHIR and OMOP have a significantly larger offering of extensible and complementary
open-source components than openEHR, although for the latter notable mature open-source
implementation are also emerging such as EHRbase [16].

Hence, we stress that beyond evaluating the instrinic structure of an open standard and the
community that supports the standard, we need to take into account the wider ecosystem of
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open-source implementations and availibility of complementary components. From this wider
perspective of the whole ecosystem surrounding the three standards, FHIR stands out as having
the most diverse and rich ecosystem because it has been mandated in certain jurisdictions. This
is relevant when comparing these standards in real-world implementations. We now turn to
two specific use cases where these considerations are at play.

Standardization of health data for federated learning

The current fragmentation in health data is one of the major barriers towards leveraging the
potential medical data for machine learning (ML). Without access to sufficient data, ML will
be limited in its application to health improvement efforts and, ultimately, from making the
transition from research to clinical practice. High quality health data, obtained from a research
setting or a real-world clinical practice setting, is hard to obtain, because health data is highly
sensitive and its usage is tightly regulated.

Federated learning (FL) is a learning paradigm that aims to address these issues of data gov-
ernance and privacy by training algorithms collaboratively without moving (copying) the data
itself [17,18]. Based on ongoing work with the PLUGIN healthcare consortium [19], we have
detailed an architecture for FL for secondary use of health data for hospitals in the Netherlands.
Starting point for this implementation are the National Health Data Infrastructure agreements
for research, policy and innovation for the Dutch healthcare sector, which have been adopted
at the beginning of 2024 [20]. Figure 1 shows a high level reference architecture of the infras-
tructure to be, comprising three areas (multiple use, applications and generic features) and a
total of 26 functional components (for details please refer to [20]). One of the prerequisites of
this architecture is that organizations that participate in a federation of ‘data stations’ use the
same common data model to make the data Findable, Accessible, Interoperable and Resusable
(FAIR). These FAIR data stations comprise components 7, 8 and 9 in Figure 1, i.e. the data,
metadata and APIs, respectively, through which this the data station can be accessed and
used.

Following the line of reasoning of Tsafnat et al., OMOP would be the go-to standard for storing
the longitudinal data in each of the data stations, where data is transformed from the original
source (component 6), stored in common data model (component 7) and properly annotated
with metadata (component 8). Indeed, by now there are quite a few reports of real-world
implementations of federated learning networks based on the OHDSI-OMOP stack, including
a global infrastructure with 22 centres for COVID19 prediction models [21], FeederNet in
South Korea with 57 participating hospitals [22], Dutch multi-cohort dementia research with
9 centres [23], the European severe heterogeneous asthma research collaboration [24] and the
recently initiated Belgian Federated Health Innovation Network (FHIN) [25].

For the PLUGIN project, however, we choose to adopt FHIR because the data model is
more compatible with the data model of the clinical administration systems. As PLUGIN
focuses on secondary use of routine health data, we feel it is more suitable than OMOP, the
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Figure 1: Reference architecture for the Dutch health data infrastructure for research and
innovation [20]
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latter being more suitable for clinical research data. openEHR might have been an option,
too, if more implementations and complementary components had been available. Another
reason for choosing FHIR is its practicality and extensibility to be used in a Python-based data
science stack, provenance of RESTful APIs out-of-the-box to facilitate easy integration with the
container-based vantage6 FL framework, and the support of many healthcare terminologies and
flexibility through the profiling mechanims [26–28]. Increasingly, other projects have reported
the use of FHIR for persistent, longitudinal storage for FL. The CODA platform, which aims
to implement a FL infrastructure in Canada similar to the PLUGIN project, compared OMOP
and FHIR and chose the latter as it has been found to support more granular mappings required
for analytics [29]. The fair4health project used FHIR as part of a FAIRification workflow to
simplify the process of data extraction and preparation for clinical study analyses [30].

Given that OMOP can be conceptually viewed as a strict subset of FHIR, hybrid solutions
using OMOP and FHIR combined have also been reported, such as the German KETOS
platform [31], and the preliminary findings from the European GenoMed4All project which
aims to connect clinical and -omics data [32]. A collaboration of 10 university hospitals in
Germany have shown that standardized ETL-processing from FHIR into OMOP can achieve
99% conformance [33], which confirms the feasiblity of the solution pattern where FHIR acts
as an intermediate sharing standard through which data from (legacy) systems are extracted
and made available for reuse in a common data model. One could argue that the distiction
between FHIR amd OMOP becomes less relevant if data can be effectively stored in either
standard. We are hopeful that initiatives like OMOP-on-FHIR indeed will foster convergence
rather than collision between these two standards [34].

In the case of PLUGIN, another important consideration for choosing FHIR over OMOP is,
that from a data architecture perspective, the mechanism of FHIR Profiles can be tied to
principle of late binding commonly applied in data lake/warehouse architectures (Figure 2):
allow ingest of widely different sources, and gradually add more constraints and validations
as you move closer to a specific use case. If machine learning is the primary objective for
secondary use, we want to be able to cast a wider net of relevant data, rather than being too
restrictive when ingesting the data at the start of processing pipeline. Late binding in data
warehousing is a design philosophy where data transformation and schema enforcement are
deferred as late as possible in the data processing pipeline, sometimes even until query time.
This approach contrasts with early binding, where data is transformed and structured as it is
ingested into the data warehouse. The advantages of this design is that it allows for greater
flexibility. During the initial ingestion of the data, we only require the data to conform to the
minimal syntactic standard defined by the base FHIR version (R4 in the diagram). As the
data is processed, more strict checks and constraints are applied, whereby ultimately different
profiles can co-exists next to one another (the two most inner circles), within a larger circle
with fewer strictions. Note that if any of the profiles includes a FHIR extension, such as adding
a field to include a female’s maiden name, the profiles are no longer strictly concentric. Hence
extra care needs to be taken when dealing with extensions when applying the principle of late
binding.
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Figure 2: Principle of late binding with FHIR profiling mechanism, illustrated with FHIR
Profiles that are currently in use in the Netherlands.

We found that this principle of late binding also allows flexible and efficient implementations
of the data stations that make use of the current best practices of a lakehouse architecture of
[35–37] and the composable data stack [38]. Lakehouses typically have a zonal architecture
that follow the Extract-Load-Transform pattern (ELT) where data is ingested from the source
systems in bulk (E), delivered to storage with aligned schemas (L) and transformed into a
format ready for analysis (T) [35]. The discerning characteristic of the lakehouse architecture
is its foundation on low-cost and directly-accessible storage that also provides traditional
database management and performance features such as ACID transactions, data versioning,
auditing, indexing, caching, and query optimization [39]. Lakehouses thus combine the key
benefits of data lakes and data warehouses: low-cost storage in an open format accessible by a
variety of systems from the former, and powerful management and optimization features from
the latter. By explicitly aligining the mechanism of FHIR Profiles with this design pattern of a
data lakehouse enables us to use complementary standards and open-source components, most
notably Apache Arrow as the standard columnar in-memory format with RPC-based data
movement [40]; Apache Parquet as the standard columnar on-disk format [41]; and Apache
Iceberg as the open table format [42,43].

One of the key challenges in using FHIR in this way pertains to the need for upgrading the
whole ELT pipeline when upgrading to a new primary FHIR version, for example R6. The
potential technical debt of version upgrades in the future is not specific to FHIR, but being
a younger standard changes are more frequent compared to OMOP and openEHR. However,
we expect that the development time required to upgrade FHIR versions is significantly less
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than the initial migration to FHIR.

The above considerations also show the conceptual difference of FHIR as a health data exchange
standard versus openEHR as a persistent storage of routine healthcare data and OMOP as a
persistent storage of health research data. For health data exchange and federated learning,
the recipient of the data determines to a large extent what subset of data available in the
source needs to be made available – i.e. the target data model is known late and this favors
late binding. In a persistent storage setting, the holder of the source data determines what
data needs to be stored – and typically everything – which favors early binding.

Health data standards in LMICs

It is a widely held belief that digital technologies have an important role to play in strengthen-
ing health systems in LMICs. Yet, also here the current fragmentation of health data stands in
the way of scaling up digital health programmes beyond project-centric, vertical solutions into
sustainable health information exchanges [44]. In the context of global digital health develop-
ments, Mehl et al. have also called for convergence to open standards, similar to Tsafnat et al.,
but additionally stress the need for open-source technologies (also our main argument in this
paper), open content (representations of public health, health system or clinical knowledge
to guide implementations) and open architectures (reusable enterprise architecture patterns
for health systems) [45]. As for the open architecture, we see a convergence towards the
OpenHIE framework [46], which has been adopted by many sub-Saharan African countries as
the architectural blueprint for implementing nation-wide health information exchanges (HIE)
[47], including Nigeria [48], Kenya [49] and Tanzania [50]. Figure 3 shows an overview of the
OpenHIE architecture.

While the OpenHIE specification is agnostic to which data standard should be used, in practice
the digital health community in LMICs have de facto converged towards FHIR as the primary
standard for health information exchange, in line with the proposal by Tsafnat et al. To
illustrate this point, consider the OpenHIM Platform architecture (Figure 4), which is currently
the largest open-source implementation of the OpenHIE specification. Clients (Point-of-Service
systems) can initiate various workflows to submit or query patient data. The Shared Health
Record (SHR) acts as the core transactional system for the health information exchange, which
in this case is realized with the HAPI FHIR server, being one of the most widely used open-
source FHIR server implementations [51].

Looking at the Point-of-Service systems, we see that as of today openEHR is rarely used as the
standard for clinical administration in LMICs. The largest open-source EHR implementations
are based on proprietary data models, and it is unlikely this will change any time soon [52].
Instead, we see that FHIR-native software development frameworks such as OpenSRP [53]
and the Open Health Stack [54] are being used more and more. In this approach, health
professionals use Android apps to register and collect routine health data (Figure 5). As an
example, OpenSRP has been deployed in 14 countries targeting various patient populations,
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Figure 3: OpenHIE architecture showing the Point of Service systems (black), the Interoper-
ability Layer (green) and the Component Layer (blue).
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Figure 4: OpenHIM Platform Architecture, illustrating the use of FHIR-based workflows be-
tween the components as specified in OpenHIE. CR: Client Registry. IOL: Interop-
erability Layer. MPI: Master Patient Index. SHR: Shared Health Record. Image
taken from https://jembi.gitbook.io/.

amongst which a reference implementation of the WHO antenatal and neonatal care guidelines
for midwives in Lombok, Indonesia [55,56]. This solution design is particularly useful for mid-
size and smaller healthcare facilities, which are often resource constrained, lacking basic IT
infrastructure to deploy a full-blown electronic medical record system. Hence, by necessity,
the FHIR-based SHR functions as the administrative system-of-record and as the hub for
information exchange at the same time.

Finally, regarding longitudinal data analysis, we also see a convergence towards FHIR as the
primary standard in LMICs. As in the case of federated learning, the choice for FHIR to im-
plement datawarehouse and analytic platforms is the preferred method due to the widespread
availibility of complementary open-source technologies. FHIR-specific technologies such as
Bulk FHIR data access and SQL-on-FHIR mentioned earlier, allow the FHIR ecosystem to
be used, complemented and integrated with generic open-source datawarehousing technologies
such as Clickhouse [57] and dbt [58].

All in all, we see that in the context of LMICs, the standardization of the three domains put
forward by Tsafnat merge into one. The SHR, as the key component within the OpenHIE
specification, serves as the back-end of the system-of-record and provides a transactional, per-
sistent storage engine for information exchange. Downstream longitudinal data stores continue
to use FHIR as the common data model for analytical purposes. One could argue that it is
in fact advantageous to converge to just one standard, thereby reducing complexity and cost
of the total system. Such a perspective ties in with the hourglass model of layered systems
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Figure 5: Overview of OpenSRP2 open-source framework for building clinical administration
apps. HIS: health information systems. Image source: https://docs.opensrp.io/.

architecture which has been used in the design of the Internet and Unix and has enabled
viral adoption and deployment scalibility [59,60]. The hourglass mode is “… an approach to
design that seeks to support a great diversity of applications (at the top of the hourglass)
and allow implementation using a great diversity of supporting services (at the bottom).” [60]
The center of the hourglass - the waist or also called the spanning layer in the information
systems parlance - is defined by a set of minimal standards which mediates all interactions
between the higher and lower layers. In case of the Internet, the spanning layer is defined
by the TCP/IP protocol, which is supported by a variety of underlying connectivity services
(many different physical networks) on top of which many different applications can be built
(email, videoconferencing etc.).

Within the context of LMICs, we believe that FHIR can act as the spanning layer within
open health data system at large. Because FHIR is inherently designed to make optimal use
of internet standards, such as the json file format and REST APIs, it is very modular and
developer friendly. The many components that make up the FHIR allows the standard to be
used effectively to implement subsystems, such as a facility registry or a health worker registry.
In comparison, OMOP and openEHR are less modular in their design and are thereby less
suitable as a standard to implement the subsystems defined, for example, in the OpenHIE
specification.

Conclusion

We agree with Tsafnat et al. that there is a dire need to converge to open data standards
in healthcare, and support the proposal to focus on openEHR, FHIR and OMOP in health-
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care informatics going forward. However, open standards are a necessary but not sufficient
condition for the convergence of health data standardization. The availability of open-source
implementations and complementary technologies are as important when choosing which open
standard to use. Furthermore, we find that the proposed trichotomy is not always relevant and
think that the full-STAC approach described by Mehl et al. is more comprehensive. In the case
of FL, we see a convergence towards OMOP and FHIR, which can be used interchangeably.
In the case of LMICs, we think that FHIR as the potential of acting as the spanning layer
within the open health data system at large, thereby enabling much wider standardization
and adoption. We strongly support ongoing developments to increase the availibility of open-
source implementations as digital public goods [61] and integration projects such as Instant
OpenHIE [62], through which we have a fighting chance to move the needle in health data
standardization for LMICs.
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